Library Catalog


Come to our library in the room 301! It is open Mon-Fri, 11am – 5pm. The librarian is Elena Eduardovna Rozova.

The list of Russian Language textbooks.

  • Ahlfors L.V., Sario L.
    Riemann surfaces.-Princeton: Princeton Univ. Press, 1960.-382 p.-bibl.: p.p. 332-373. [16430]

  • Arnol’d V.I.
    Ordinary differential equations.-Berlin: Springer-Verlag, 1992.-334 p. [17081, 17082, 17083, 17084]

  • Arora S., Barak B.
    Computationnal complexity. A modern approach.Cambridge: Cambridge Univ. Press, 2010.-579 p.-bibl. p.p. 549-573. [19352, 19353]

  • Ash R.B.
    Basic abstract algebra. For graduate students and advanced undergraduates.-N.-Y.: Dover Publ., 2007.-408 p.-bibl.: p.p. 399-400.[202]

  • Auslander L.
    Differential Geometry [4912]

  • Auslander L., MacKenzie R.E.
    Introduction to differentiable manifolds.N.-Y.: Dover Publ., 1977.-218 p. [16555]

  • Auslander L., MacKenzie R.E.
    Introduction to differentiable manifolds.N.-Y.: McGraw-Hill Book Co., 1963.-219 p. [4913]

  • Axler S.
    Linear algebra done right. 2nd ed.-N.-Y.: Springer, 1997.-252 p. [19483, 19484]

  • Bos H.J.M.
    Lectures in the history of mathematics.Providence, R.I.: Amer. Math. Soc., 1993.198 p. (History of Math., v. 7) [5819]

  • Burde G., Zieschang H.
    Knots.Walter de Gruyter, Berlin-New York, 1985. -399 p. [8537]

  • Carmo M.P. do.
    Differential geometry of curves and surfaces.Upper Saddle River: Prentice-Hall, 1976.-504 p. [19022, 19023]

  • Cassels J.W.S.
    Local fields.-Cambridge: Univ. Press, 1986.-360 p.bibl.: p.p. 352-357. (London Math. Soc. Student Texts, v. 30 [22]

  • Dummit D.S., Foote R.M.
    Abstract algebra. 3-d ed.-John Wiley & Sons, 2004.-932 p. [19024, 19025]
    Edwards H.M.
    Galois theory.-N.-Y.: Springer, 1984.-152 p. -bibl.: p.p. 149-150. (Grad. Texts Math., v. 101) [2892]

  • Eisenbud D.
    Commutative algebra with a view toward algebraic geometry.-N.-Y.: Springer, 2004.-800 p.-bibl.: p.p 798800. (Grad.Texts in Math., v.150) [19351]

  • Evans L.C.
    Partial differential equations.-Providence, R.I.: Amer. math. Soc., 1998.-662 p.-bibl.: p.p. 651-654. [18401]

  • Farkas H.M., Kra I.
    Riemann surfaces.-N.-Y.: Springer-Verlag, 1980.-337 p.-bibl.: 48. [16582]

  • Farkas H.M., Kra I.
    Theta constants, Riemann surfaces and the modular group. An introduction with applications to uniformization theorems, partition identities and combinatorial number theory.-Providence, R.I.: Amer. Math. Soc., 2001.-532 p.-bibl.: 101. (Grad. Stud. Math., v. 37) [18387]

  • Fomenko A., Fuchs D.
    Homotopical Topology. 2nd ed. –Springer, 2016. -627 p. [9004]

  • Fulton W., Harris J.
    Representation theory. A first course.-Berlin: Springer, 1991.-552 p.-bibl.: p.p. 536541. (Grad. Texts Math., v. 129) [9294, 19226]

  • Gorodensev A.L.
    Algebra I. Textbook for Students of Mathematics.New. York: Springer, 2013.-564 p. [5062]

  • Gorodentsev A.L.
    Algebra II. Textbooc for Students of Mathematics.New. York: Springer, 2015.-370 p. [5068]

  • Gorodentsev A.L.
    Algebraic geometry. Start course.-Moscow: Inependent Univ., 2006.-96 p. [17368]

  • Harris J.
    Algebraic geometry. A first course.-N.-Y.: Springer, 2010.-328 p. (Grad. Texts Math., N 133) [18833, 18834, 19077]

  • Hartshorne R.
    Algebraic geometry.-N.-Y.: Springer, 1977.496 p.-bib.: p.p. 459-469. [16287]

  • Katok A., Hasselblatt B.
    Introduction to the modern theory of dynamical systems. With supplement by A.Katok and L.Mendoza.-Cambridge: Cambridge Univ. Press, 1999.802 p.-bibl.: 781-792. [13533]

  • Katok A., Hasselblatt B.
    Introduction to the modern theory of dynamical systems.-Cambridge: Cambridge Univ. Press.-1997.-802 p.-bibl.: p.p. 781-792. [3204, 8622]

  • Kazaryan M.E.
    Calculus of manifolds. 2-nd ed., rev.-M.: MCCME, 2004.-32 p. [14504]

  • Kazaryan M.E.
    Differential geometry.-M.: MCCME, 2006.-40 p. [17095]

  • Lando S.K.
    Lectures on generating functions.-Providence, R.I.: Amer. Math. Soc., 2003.-148 p. [14380, 14500, 14770, 15927, 15928, 15929, 15930, 15931]

  • Lang S.
    Algebra.-Reading: Addison-Wesley Publ. Co, 1965.-508 p. [6014]

  • Lang S.
    Algebraic number theory.-Berlin: Springer, 1986.-354.-bibl.: 15. (Grad. Texts Math., v. 110) [9527]

  • Lang S.
    Complex analysis. 2d ed.-New York: Springer, 1985.-366 p. (Grad. Texts Math.) [9538]

  • Lang S.
    Complex analysis. Fourth edition.-N.-Y.: Springer, 1999.-486 p. (Grad. Texts Math., N 103) [19078]

  • Lang S.
    Introduction to linear algebra. 2-nd ed.-N.-Y.: Springer, 1986.-291 p. [61]

  • Lang S.
    Differential manifolds.-New York: 1985.230 p.-bibl.: 29. [9539]

  • Lang S.
    Introduction to modular forms.-Berlin: Springer-Verrlag, 1976.-261 S.-bibl.: S.S. 255-259. (Grundl. math. Wissensch., Bd. 222) [8641]

  • Lang S.
    Linear algebra. 3-rd. ed.-New York: Spriger, 1987.-286 p. (Undergrad. Texts Math.) [9536]

  • Massey W.S.
    Algebraic topology: an introduction.-N.-Y.: Harcourt, Brace & World, 1967.-261 p. [6052]

  • Munkres J.R.
    Analysis on manifolds.-Westview Press, 1991.366 p. [17810, 17811, 17812]

  • Neukirch J
    Class field theory.-Berlin: Springer, 1986.140 p.-bibl.: 45. [8748]

  • Prasolov V.V.
    Elements of Combinatorial and Differential Topology. Providence R.I.: Amer. Math. Soc.,2006. -331p. [7825, 16602]

  • Prasolov V.V.
    Elements of Homology Theory. Providence R.I.: Amer. Math. Soc.,2007. -418p.[978]

  • Prasolov V.V.
    Intuitive topology.-Hyderabad: Univ. Press, 1998.-95 p. [9005, 15678]

  • Prasolov V.V.
    Intuitive topology.-Providence, R.I.: Amer. Math. Soc., 1995.-95 p. (Math. World, v. 4) [8249, 14461, 17085, 17086, 17087]

  • Prasolov V.V.
    Non-euclidean geometry.-M.: MCCME, 2006.55 p. [17097]

  • Prasolov V.V.
    Polynomials. – Springer, 2004. -301 p. [3588]

  • Prasolov V.V.
    Problems and theorems in linear algebra.Providence R.I.: Amer. Math. Soc., 1994.-225 p.bibl.: p.p. 219-221. (Transl. Math. Monogr., v. 134) [2935]

  • Prasolov V.V., Sossinsky A.B.
    Knots, Links, Braids and 3-Manifolds. An Introduction to the New Invariants in Low-Dimensional Topology. Providence R.I.: Amer. Math. Soc., 1996. -239p. [12593]

  • Prasolov V.V., Sossinsky A.B.
    Topology – 1: Lecture Notes.-2-nd ed. revised.M.: MCCME, 2006.-64 p. [17461]

  • Prasolov V.V., Sossinsky A.B.
    Topology – I: Lecture Notes. 5 -th ed.-M.: MCCME, 2009.-64 p. [17462, 18636, 18637]

  • Prasolov V.V., Sossinsky A.B.
    Topology -I: Lecture notes.- M.: MCCME, 2005.64 p. [16093]

  • Prasolov V.V., Sossinsky A.B.
    Topology-1: Lecture Notes.-3-rd ed. revised.- M.: MCCME, 2007.-64 p. [19829]

  • Prasolov V.V., Tikhomirov V.M.
    Geometry.-Providence, R.I.: Amer. Math. Soc., 2001.-257 p. (Transl. Amer. Math. Soc., vol. 200) [5330, 12329]

  • Priestley Y.A.
    Introduction to complex analysis.-Oxford: Clarendon Press, 1985.-196 p. [17997]

  • Reid M.
    Undergraduate algebraic geometry.-Cambridge: Cambridge Univ. Press, 1990.-132 p. [19079]

  • Reid M.
    Undergraduate algebraic geometry.-Cambridge: Cambridge Univ. Press.,1988.-129 p. [3290], [3289]

  • Representation theory. vol. 1. /D.Leites, ed.Lahore: Abdus Salam School Math. Sci., 2009.112 p. Authors: Kirillov A.A., Bernstein J, Arnold V.I. [18816, 18817, 18818, 18819, 18820]
  • Rudin W.
    Principles of mathematical analysis. 2-nd ed.N.-Y.: McGraw-Hill Book Co., 1964.-270 p. [12124]

  • Rudin W.
    Principles of mathematical analysis. 3-d ed.-N.-Y.: McGraw-Hill, 1976.-342 p. [235, 6118]

  • Serre J.-P.
    A course in arithmetic.-N.-Y.: Springer-Verlag, 1973.-115 p. [6150]

  • Serre J.-P.
    Representations lineaires des groupes finis.Paris: Hermann, 1967.-140 p. [16315]

  • Sheinman O.K.
    Basic representation theory. 2-nd ed., rev.M.: MCCME, 2004.-47 p. [14505]

  • Shen A., Vereshchagin N.K.
    Basic set theory.-Providence R.I.: Amer. Math. Soc., 2002.-116 p. [14569, 14570]

  • Shen A., Vereshchagin N.K.
    Computable functions.-Providence, R.I.: Amer. Math. Soc., 2003.-166 p. [14571, 14572, 14573, 19892]

  • Shilov G.E.
    Linear algebra.-N.-Y.: Dover Publ., 388 p. [19485, 19486]

  • Silverman J.H.
    Advanced topics in the arithmetic of elliptic curves.-N.-Y.: Springer, 1999.-525 p.-bibl.: p.p. 488-497. [15414]

  • Silverman J.H.
    The arithmetic of elliptic curves.-New York: Springer, 1986.-400 p.-bibl.: p.p.372378. (Grad. Texts in Math., v. 106 ) [9564, 15401]

  • Sipser M.
    Introduction to the theory of computation. 2-nd ed. International edition.-N.-Y.: Thomson Course Technology, 2006.-437 p.-bibl.: 74. [16318]

  • Sipser M.
    Introduction to the theory of computation. 3-rd. ed.-Delhi: Ctngage Learning, 2013.-458 p.-bibl.: 77. [19893]

  • Sipser M.
    Introduction to the theory of computation. 3-rd. ed.-Delhi: Ctngage Learning, 2013.-458 p.-bibl.: 77. [19893]

  • Sossinsky A.B.
    Geometries.-M.: Independent Univ. Moscow, 2008.-104 p. [18872]

  • Sossinsky A.
    Knots. Mathematics with a twist.-Cambridge: Harvard Univ. Press, 2002.-128 p. [18633, 18635,18636]

  • Sossinsky A.
    Noeuds: Genese d’une theorie mathematique.Paris: Seuil, 1999.-151 p. [8531]

  • Sossinsky A.B.
    Topology-II: Lecture notes.-M.:МЦНМО, 2015.104 p. [19679, 19680, 19681, 19682, 19683]

  • Springer G.
    Introduction to Riemann surfaces.-Reading: Addison-Wesley Publ. Co., 1957.-307 p. [1705]

  • Tveito A., Winther R.
    Introduction to partial differential equations. A computational approach.-Berlin: Springer, 2005.-394 p. bibl.: 31. [19822]

  • Vanden Eynden C.
    Elementary number theory.-N.-Y.: Random House, 1987.-266 p. [6182]

  • Vassiliev V.A.
    Introduction to topology.-Providence, R.I.: Amer. Math. Soc., 2001.-149 p. [2118, 11545-, 15920, 15921, 15922, 15923, 15924, 18209] 2118, 11545-,15920, 15921, 15922, 15923, 15924, 18209

  • Venttsel Ye.S.
    Elements of game theory.-M.: Mir, 1980.69 p. [2986]

  • Venttsel’ E.S.
    An introduction to the theory of games.Boston: D.C.Heath & Co., 1963.-65 p. [2987]

  • Vick J.W.
    Homology theory: An introduction to algebraic topology.-N.-Y.: Acad. Press, 1973.-237 p.bibl.: p.p. 221-231. [6178]

  • Vinberg E.B.
    Linear representations of groups.-Basel: Birkhauser Verlag, 2010.-146 p.[19212, 19227]

  • Webster A.G.
    Partial differential equations of mathematical physics. 2-nd correct. ed.-N.-Y.: Dover Publ., 1955.-440 p. [6193]

  • Weil A.
    Basic number thoery.-Berlin: Springer-Verlag, 1967.-294 p. (Grundl. math. Wissensch., Bd. 144) [16323]

  • Weiss E.
    Algebraic number theory.-N.-Y.: McGraw-Hill Book Co., 1963.-275 p. [16517]

  • Wilder R.L.
    Evolution of mathematical concepts: An elementary study.-N.-Y.: J.Wiley & Sons, 1968.-224 p.-bibl.: p.p. 212-217. [6219]

  • Wloka J.
    Partial differential equations.-Cambridge: Cambridge Univ. Press, 1987.-518 p.-bibl.: p.p. 511-514. [3267]

  • Wolf A.
    A history of science, technology, and philosophy in the 16th & 17th centuries.-London: G.Allen & Unwin, 1935.-692 p. [2993]

  • Woodcock A., Davis M.
    Catastrophe theory.-N.-Y.: E.P.Dutton, 1978.152 p. [18991]

  • Zassenhaus H.
    The theory of groups.-N.-Y.: Chelsea Publ. Co., 1949.-159 p. [12037]