Assume that T' is not irreducible, i.e., $W = \text{null } T$ is non-trivial. Consider $\text{null } W = \{v \in V : T'(v) = 0, T(v) \neq 0\}$, and let W be the complement of $\text{null } W$.

Let $A = \text{End}(V)$, $A^t = \text{End}(V^*)$.

The matrix of A^t in the dual basis is the transpose of the matrix of A.

Theorems and definitions:

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all $\alpha, \beta
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β

Theorem 1 (Irreducibility):

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β

Theorem 2 (Decomposition):

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β

Theorem 3 (Isomorphism):

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β

Proof of Theorem 3 (Irreducibility):

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β

Proof of Theorem 4 (Decomposition):

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β

Proof of Theorem 5 (Isomorphism):

- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
- $T(\alpha, \beta) = T'(\alpha, \beta)$ for all α, β
1. Definition of a representation

Definition 1.1. Assume that \(T : \mathbb{C} \rightarrow \mathbb{C}(T) \) is a representation over a field \(T \). Define the **character** \(\chi \) of the representation \(T \) by

\[
\chi_T = \text{tr}(T(x)), \quad x \in G.
\]

Proposition 1.2. If \(\chi_1 = \chi_2 \), then \(T_1 \) and \(T_2 \) have the same character.

2. Decomposition of a representation

Theorem 2.1. Denote by \(\Theta(x) \) the field \(\mathbb{C}(x) \) if \(x \in G \) or the field \(\mathbb{C} \) if \(x \notin G \). Assume that \(T : \mathbb{C} \rightarrow \mathbb{C}(T) \) is a representation of the group \(G \) over the field \(T \). If \(T \) is not equal to \(\mathbb{C} \) or \(\mathbb{C}(x) \) for any \(x \) in \(G \), then the representation \(T \) is completely reducible.

Exercise 2.2. Assume \(T : \mathbb{C} \rightarrow \mathbb{C}(T) \) is a representation of the group \(G \) over the field \(T \). Show that \(T \) is a direct sum of irreducible representations.

We claim that every real or complex representation \(T \) of a finite group \(G \) is isomorphic to a sum of one-dimensional representations with some multiplicities.

\[
T = \bigoplus_{i=1}^{n} \mathbb{C} \cdot e_i
\]

The multiplicities are uniquely determined by \(T \). This result is a bit technical; see [Valence, Theorem 1 of Section 2.1].

Anon, October 30, 2020
Assume \(\langle x, y \rangle \) is a group. \(\mathcal{G} = \langle x, y \rangle \) is the minimal normal subgroup that the quotient group of \(G \) by \(\mathcal{G} \) is abelian.