
MATH IN MOSCOW BASIC REPRESENTATION THEORY

LECTURE 3. DUAL REPRESENTATION AND TENSOR PRODUCT OF
REPRESENTATIONS

1. Complete reducibility of representations

Definition 1.1. Let F be a field. Then we denote by charF the minimal natural number n such
that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0. (1.1)

If there is no such natural number we put charF := 0.

Proposition 1.2. (Maschke) Assume that a group G is finite, F is a field, V is a vector space
over the field F, T : G → GL(V ) is a representation, and charF does not divide |G|. Then the
representation T is completely reducible.

Proof. Assume U ⊂ V is an invariant subspace. Denote by W ⊂ V a subspace of V such that
U ⊕W = V . Define P ∈ End(V ) by setting

P (u) = u, ∀u ∈ U, P (w) = 0, ∀w ∈ W. (1.2)

Now we will average P over the group G. Put

P0 =
1

|G|
∑
g∈G

T (g)PT (g−1). (1.3)

Then P0 ∈ End(T ). Thus, ker(P0) is invariant wrt T . One can show that

U ⊕ kerP0 = V. (1.4)

□

Exercise 1.3. Show the last claim in the proof.

Problem 1.4. Assume that the group G is finite and T : G → GL(C2) is a representation.
Suppose ∃g, h ∈ G such that T (g)T (h) ̸= T (h)T (g). Can the representation T be not irreducible ?

Question 1.5. Assume T : G → GL(V ) is a completely reducible representation and V is ex-
pressed as a sum of minimal invariant subspaces:

V =
m⊕
i=1

Vi (1.5)

Is such expression unique up to permutation of summands ?
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2. Dual space and dual representation

First let us recall the algebraic construction.

Definition 2.1. Let V be a vector space over a field F. The vector space Hom(V,F) is called the
dual space (to the vector space V ) and is denoted by V ∗.

Definition 2.2. Assume that V is a finite-dimensional vector space over a field F, {v1, . . . , vn}
is a basis of V . Define f i ∈ V ∗ via

f i(vj) = δij, 1 ≤ i, j ≤ n (2.1)

The set {f 1, f 2, . . . , fn} is called the dual basis (to the basis {e1, . . . , en}).

Exercise 2.3. Show that {f 1, f 2, . . . , fn} is a basis of V ∗

Proposition 2.4. Assume that V is a finite-dimensional vector space over a field F. Then there
exists an isomorphism of V and (V ∗)∗ such that it does not depend on the choice of basis in V .

Exercise 2.5. Prove this proposition.

Question 2.6. Can we make a similar statement about an isomorphism of V and V ∗ ?

Definition 2.7. Assume that V and U are finite-dimensional vector spaces over a field F, A ∈
Hom(V, U). Define A∗ ∈ Hom(U∗, V ∗) by

(A∗(f))(v) = f(Av), ∀v ∈ V, ∀f ∈ U∗. (2.2)

Exercise 2.8. Show that for any A ∈ Hom(V, U) the map A∗ ∈ Hom(U∗, V ∗) exists and it is
unique.

Problem 2.9. Assume that V, U are finite-dimensional vector spaces over a field F, {v1, . . . , vn}
is a basis of V , {f 1, . . . , fn} is its dual basis, {u1, . . . , um} is a basis of U , {g1, . . . , gm} is its dual
basis, A ∈ Hom(V, U) and its matrix in the bases {v1, . . . , vn} and {u1, . . . , um} is

(aji )1≤i≤n,1≤j≤m (2.3)

Find the matrix of A∗ in the bases {g1, . . . , gm}, {f 1, . . . , fn}

Definition 2.10. Assume T : G → GL(V ) is a representation over a field F . Define its dual
representation T ∗ : G → GL(V ∗) by

T ∗(g) = (T (g−1))∗. (2.4)

Problem 2.11. Show that T ∗ is indeed a representation of the group G.

Problem 2.12. Define T : Z → GL(R3) as

T (n) =

1 n n2+n
2

0 1 n
0 0 1

 .

Show that T is a representation. Find the matrix of T ∗(n) in the dual basis.

Question 2.13. Assume T : G → GL(V ) is a representation. Is it always true that the represen-
tations T and (T ∗)∗ are isomorphic ?
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Problem 2.14. Let T be an irreducible representation of a group G. Is it possible that the
representation T ∗ is not irreducible ?

3. Tensor products of vector spaces, endomorphisms and representations

Definition 3.1. Assume that V, U are finite-dimensional vector spaces over a field F. Denote by
Free(V, U) the set of finite linear combinations

∑n
i=1 ai(xi, yi), where n ∈ Z+, xi ∈ V, yi ∈ U, ai ∈

F,∀1 ≤ i ≤ n. It has a natural structure of a vector space. Then define Ident(V, U) ⊂ Free(V, U)
as

Ident(V, U) = span⟨{(ax+ bz, y)− a(x, y)− b(z, y) |x, z ∈ V, y ∈ U, a, b ∈ F}∪
{(x, ay + bt)− a(x, y)− b(x, t) |x ∈ V, y, t ∈ U, a, b ∈ F}⟩. (3.1)

The tensor product V ⊗ U is, by definition, the quotient space Free(V, U) by Ident(V, U).

Proposition 3.2. Assume that V, U are finite-dimensional vector spaces over a field F, {v1, . . . , vn}
is a basis of V , {u1, . . . , um} is a basis of U . Then

{vi ⊗ uj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} (3.2)

is a basis of V ⊗ U .

Exercise 3.3. Prove this proposition, it may be a bit challenging to show the linear independence.

Proposition 3.4. Assume that V is a finite-dimensional vector space. Then there exists an
isomorphism between the vector spaces V ⊗ V ∗ and End(V ) such that it does not depend on the
choice of the basis in V

Exercise 3.5. Prove this proposition.

Definition 3.6. Assume that V, U are finite-dimensional vector spaces over a field F, A ∈
End(V ), B ∈ End(U). Define A⊗B ∈ End(V ⊗ U) by the formula

A⊗B(v ⊗ u) := (Av)⊗ (Bu) (3.3)

the tensors of the form v ⊗ u and then extend by linearity.

Exercise 3.7. Show that A⊗B is well-defined.

Exercise 3.8. Assume that V, U are finite-dimensional vector spaces over a field F, {v1, . . . , vn}
is a basis of V , {u1, . . . , um} is a basis of U , A ∈ End(V ), its matrix in the basis {v1, . . . , vn} is

(aji )1≤i≤n,1≤j≤n, (3.4)

B ∈ End(U), its matrix in the basis and {u1, . . . , um} is

(bji )1≤i≤m,1≤j≤m. (3.5)

Find the matrix of A⊗B in the basis

{v1 ⊗ u1, v1 ⊗ u2, . . . , v1 ⊗ um, v2 ⊗ u1, . . . , vn ⊗ um}. (3.6)

Question 3.9. Is it always true that

Tr(A⊗B) = Tr(A)Tr(B)? (3.7)
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Definition 3.10. Assume T : G → GL(V ), S : G → GL(U) are representations over a field F.
Then T ⊗ S : G → GL(V ⊗ U) is defined by

(T ⊗ S)(g) := (T (g))⊗ (S(g)). (3.8)

Exercise 3.11. Let T1, . . . , Tn be the set of all pairwise non-isomorphic one-dimensional complex
representations of G. Show that this set form a group, where the tensor product plays a role of the
multiplication and the inverse element is the dual representation. Describe that group for G = Zn,
Sn.

Problem 3.12. Let T be a representation of a finite group G. Is it true that the representation
T ⊗ T ∗ of the group G always has a one-dimensional invariant subspace ?

4. Symmetric and antisymmetric tensors

Definition 4.1. Let V be a vector space over F. Define the subspaces S2(V ) and Λ2(V ) of V ⊗V
as

S2(V ) := span⟨x⊗ y + y ⊗ x |x, y ∈ V ⟩, Λ2(V ) := span⟨x⊗ y − y ⊗ x |x, y ∈ V ⟩. (4.1)

Exercise 4.2. Show that for any finite-dimensional vector space V we have that

S2(V )⊕ Λ2(V ) = V ⊗ V. (4.2)

Problem 4.3. Consider the projection operator P ∈ End(R2 ⊗ R2) onto the subspace S2R2 cor-
responding to the decomposition

R2 ⊗ R2 = S2R2 ⊕ Λ2R2.

Find the matrix of P in the standard basis.

Definition 4.4. Assume that V is a vector space, A ∈ End(V ) over F. Define the endomorhisms
S2(A) ∈ End(S2(V )),Λ2(A) ∈ End(Λ2(V )) as the restrictions of A ⊗ A to the subspaces S2(V )
and Λ2(V ) respectively.

Definition 4.5. Assume that T : G → GL(V ) is a representation. Define representations S2T :
G → GL(S2(V )),Λ2T : G → GL(Λ2(V ) by

(S2T )(g) := S2(T (g)), (Λ2T )(g) := Λ2(T (g)). (4.3)

Chapters from the textbooks relevant for the lecture:

• S.Roman, Advanced Linear Algebra, Sections 3,14.
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