MATH IN MOSCOW BASIC REPRESENTATION THEORY
LECTURE 3. DUAL REPRESENTATION AND TENSOR PRODUCT OF
REPRESENTATIONS

1. COMPLETE REDUCIBILITY OF REPRESENTATIONS

Definition 1.1. Let F be a field. Then we denote by charF the minimal natural number n such
that

1+14+---+1=0. (1.1)
—_——
n times
If there is no such natural number we put charF := 0.
Proposition 1.2. (Maschke) Assume that a group G is finite, F is a field, V is a vector space

over the field F, T : G — GL(V) is a representation, and charF does not divide |G|. Then the
representation T' is completely reducible.

Proof. Assume U C V is an invariant subspace. Denote by W C V a subspace of V' such that
U@ W =V. Define P € End(V) by setting

Pu)=u, YuelU, Pw)=0, YweW. (1.2)
Now we will average P over the group G. Put
1 _
by = @ ZT(Q)PT(Q H. (1.3)
geG

Then Py € End(T"). Thus, ker(F) is invariant wrt 7". One can show that

U@kerFy=V. (1.4)

Exercise 1.3. Show the last claim in the proof.

Problem 1.4. Assume that the group G is finite and T : G — GL(C?) is a representation.
Suppose g, h € G such that T(g)T'(h) # T(h)T(g). Can the representation T be not irreducible ?

Question 1.5. Assume T : G — GL(V) is a completely reducible representation and V is ex-
pressed as a sum of minimal invariant subspaces:

V=V (1.5)

Is such expression unique up to permutation of summands ?
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2. DUAL SPACE AND DUAL REPRESENTATION
First let us recall the algebraic construction.

Definition 2.1. Let V' be a vector space over a field F. The vector space Hom(V,F) is called the
dual space (to the vector space V') and is denoted by V*.

Definition 2.2. Assume that V' is a finite-dimensional vector space over a field I, {v1, ..., 0.}
1s a basis of V.. Define f* € V* via

i) =65, 1<i,j<n (2.1)
The set {f1, f2,..., f"} is called the dual basis (to the basis {ey, ..., en}).
Exercise 2.3. Show that {f', f%, ..., f"} is a basis of V*

Proposition 2.4. Assume that V is a finite-dimensional vector space over a field F. Then there
exists an isomorphism of V and (V*)* such that it does not depend on the choice of basis in V.

Exercise 2.5. Prove this proposition.
Question 2.6. Can we make a similar statement about an isomorphism of V and V* ?

Definition 2.7. Assume that V and U are finite-dimensional vector spaces over a field F, A €
Hom(V,U). Define A* € Hom(U*, V*) by

(A*(f))(v) = f(Av), Yv eV Vfe U™ (2.2)

Exercise 2.8. Show that for any A € Hom(V,U) the map A* € Hom(U*,V*) exists and it is
unique.

Problem 2.9. Assume that V,U are finite-dimensional vector spaces over a field F, {vy,...,v,}
is a basis of V., {fY,..., f*} is its dual basis, {uy, ..., un} is a basis of U, {g*, ..., g™} is its dual
basis, A € Hom(V,U) and its matriz in the bases {vy,...,v,} and {u,...,uy} is

(a{)1<i<n 1<j<m (2.3)

I e

Find the matriz of A* in the bases {g*,..., g™}, {f' ..., f"}

Definition 2.10. Assume T : G — GL(V) is a representation over a field F'. Define its dual
representation T* : G — GL(V*) by

T*(g) = (T(g7")"- (24)
Problem 2.11. Show that T* is indeed a representation of the group G.

Problem 2.12. Define T : Z — GL(R?) as

1 n n2;—n
Tn)=10 1 n
0 0 1

Show that T is a representation. Find the matriz of T*(n) in the dual basis.

Question 2.13. Assume T : G — GL(V) is a representation. Is it always true that the represen-

tations T and (T*)* are isomorphic ?
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Problem 2.14. Let T be an irreducible representation of a group G. Is it possible that the
representation T™ is not irreducible ?

3. TENSOR PRODUCTS OF VECTOR SPACES, ENDOMORPHISMS AND REPRESENTATIONS

Definition 3.1. Assume that V,U are finite-dimensional vector spaces over a field F. Denote by
Free(V,U) the set of finite linear combinations > | a;(z;,y;), wheren € Zy, x; € V,y; € U, a; €
F.V1 <i <n. It has a natural structure of a vector space. Then define Ident(V,U) C Free(V,U)
as
Ident(V,U) = span{{(azx + bz,y) — a(z,y) — b(z,y) |,z € V,y € U,a,b € F}U
{(z,ay + bt) — a(z,y) — b(z,t) |z € V,y,t € U,a,b € F}). (3.1)

The tensor product V- ® U s, by definition, the quotient space Free(V,U) by Ident(V,U).

Proposition 3.2. Assume that V,U are finite-dimensional vector spaces over a field F, {vq, ..., v,}
is a basis of V., {u1,...,un} is a basis of U. Then
{vi®uj|1<i<n1<j<m} (3.2)

1s a basis of V@ U.
Exercise 3.3. Prove this proposition, it may be a bit challenging to show the linear independence.

Proposition 3.4. Assume that V is a finite-dimensional vector space. Then there exists an
isomorphism between the vector spaces V@ V* and End(V') such that it does not depend on the
choice of the basis in 'V

Exercise 3.5. Prove this proposition.

Definition 3.6. Assume that V.U are finite-dimensional vector spaces over a field F, A €
End(V), B € End(U). Define A® B € End(V ® U) by the formula

A® B(v®u):= (Av) ® (Bu) (3.3)
the tensors of the form v @ u and then extend by linearity.

Exercise 3.7. Show that A ® B is well-defined.

Exercise 3.8. Assume that V,U are finite-dimensional vector spaces over a field F, {vy,...,v,}
is a basis of V., {uy, ..., un} is a basis of U, A € End(V'), its matriz in the basis {vy,...,v,} is
(] )12izn,1<j<n; (3.4)
B € End(U), its matriz in the basis and {uy, ..., uy} is
(bDr<ism,1<j<m: (3.5)

Find the matriz of A® B in the basis
{1 @ up, v @ Ug, ..., V1 @ Up, Vg @ Uty ...\ Uy @ Uy} (3.6)

Question 3.9. Is it always true that
Tr(A® B) = Tr(A)Tr(B)? (3.7)



Definition 3.10. Assume T : G — GL(V), S : G — GL(U) are representations over a field F.
ThenT® S : G — GL(V®U) is defined by

(T'® S5)(g) = (T(9)) © (5(9))- (3.8)

Exercise 3.11. Let T1,...,T,, be the set of all pairwise non-isomorphic one-dimensional complex
representations of G. Show that this set form a group, where the tensor product plays a role of the
multiplication and the inverse element is the dual representation. Describe that group for G = Z,,

Sh.-

Problem 3.12. Let T be a representation of a finite group G. Is it true that the representation
T ®T* of the group G always has a one-dimensional invariant subspace ¢

4. SYMMETRIC AND ANTISYMMETRIC TENSORS

Definition 4.1. Let V be a vector space over F. Define the subspaces S*(V) and A2(V) of VRV
as

S2(V):=span{z @y +y@z|z,yc V), A (V):=span{z@y—yz|z,ycV). (4.1)
Exercise 4.2. Show that for any finite-dimensional vector space V we have that

SEV)YeAN(V)=V eV, (4.2)

Problem 4.3. Consider the projection operator P € End(R? ® R?) onto the subspace S*R? cor-
responding to the decomposition

R? ® R? = S’R? @ A’R?.
Find the matrixz of P in the standard basis.

Definition 4.4. Assume that V is a vector space, A € End(V') over F. Define the endomorhisms
S%(A) € End(S*(V)),A*(A) € End(A*(V)) as the restrictions of A® A to the subspaces S*(V)
and A*(V') respectively.

Definition 4.5. Assume that T : G — GL(V) is a representation. Define representations S*T :
G — GL(S*(V)), A*T : G — GL(A*(V) by

(S°T)(g) == S*(T(g)), (A*T)(g) := A*(T(g))- (4.3)

Chapters from the textbooks relevant for the lecture:
e S.Roman, Advanced Linear Algebra, Sections 3,14.



