LECTURE 3. DUAL REPRESENTATION AND TENSOR PRODUCT OF REPRESENTATIONS

1. Complete reducibility of representations

Definition 1.1. Let \mathbb{F} be a field. Then we denote by char \mathbb{F} the minimal natural number n such that

$$\underbrace{1+1+\dots+1}_{n \text{ times}} = 0. \tag{1.1}$$

If there is no such natural number we put $\operatorname{char} \mathbb{F} := 0$.

Proposition 1.2. (Maschke) Assume that a group G is finite, \mathbb{F} is a field, V is a vector space over the field \mathbb{F} , $T:G\to \mathrm{GL}(V)$ is a representation, and char \mathbb{F} does not divide |G|. Then the representation T is completely reducible.

Proof. Assume $U \subset V$ is an invariant subspace. Denote by $W \subset V$ a subspace of V such that $U \oplus W = V$. Define $P \in \text{End}(V)$ by setting

$$P(u) = u, \quad \forall u \in U, \quad P(w) = 0, \quad \forall w \in W.$$
 (1.2)

Now we will average P over the group G. Put

$$P_0 = \frac{1}{|G|} \sum_{g \in G} T(g) PT(g^{-1}). \tag{1.3}$$

Then $P_0 \in \text{End}(T)$. Thus, $\ker(P_0)$ is invariant wrt T. One can show that

$$U \oplus \ker P_0 = V. \tag{1.4}$$

Exercise 1.3. Show the last claim in the proof.

Problem 1.4. Assume that the group G is finite and $T: G \to GL(\mathbb{C}^2)$ is a representation. Suppose $\exists g, h \in G$ such that $T(g)T(h) \neq T(h)T(g)$. Can the representation T be not irreducible?

Question 1.5. Assume $T: G \to GL(V)$ is a completely reducible representation and V is expressed as a sum of minimal invariant subspaces:

$$V = \bigoplus_{i=1}^{m} V_i \tag{1.5}$$

Is such expression unique up to permutation of summands?

Date: September 22, 2022.

2. Dual space and dual representation

First let us recall the algebraic construction.

Definition 2.1. Let V be a vector space over a field \mathbb{F} . The vector space $\text{Hom}(V, \mathbb{F})$ is called the dual space (to the vector space V) and is denoted by V^* .

Definition 2.2. Assume that V is a finite-dimensional vector space over a field \mathbb{F} , $\{v_1, \ldots, v_n\}$ is a basis of V. Define $f^i \in V^*$ via

$$f^{i}(v_{j}) = \delta^{i}_{j}, \quad 1 \le i, j \le n \tag{2.1}$$

The set $\{f^1, f^2, \ldots, f^n\}$ is called the dual basis (to the basis $\{e_1, \ldots, e_n\}$).

Exercise 2.3. Show that $\{f^1, f^2, \dots, f^n\}$ is a basis of V^*

Proposition 2.4. Assume that V is a finite-dimensional vector space over a field \mathbb{F} . Then there exists an isomorphism of V and $(V^*)^*$ such that it does not depend on the choice of basis in V.

Exercise 2.5. Prove this proposition.

Question 2.6. Can we make a similar statement about an isomorphism of V and V^* ?

Definition 2.7. Assume that V and U are finite-dimensional vector spaces over a field \mathbb{F} , $A \in Hom(V, U)$. Define $A^* \in Hom(U^*, V^*)$ by

$$(A^*(f))(v) = f(Av), \quad \forall v \in V, \forall f \in U^*. \tag{2.2}$$

Exercise 2.8. Show that for any $A \in \text{Hom}(V, U)$ the map $A^* \in \text{Hom}(U^*, V^*)$ exists and it is unique.

Problem 2.9. Assume that V, U are finite-dimensional vector spaces over a field \mathbb{F} , $\{v_1, \ldots, v_n\}$ is a basis of V, $\{f^1, \ldots, f^n\}$ is its dual basis, $\{u_1, \ldots, u_m\}$ is a basis of U, $\{g^1, \ldots, g^m\}$ is its dual basis, $A \in Hom(V, U)$ and its matrix in the bases $\{v_1, \ldots, v_n\}$ and $\{u_1, \ldots, u_m\}$ is

$$(a_i^j)_{1 \le i \le n, 1 \le j \le m} \tag{2.3}$$

Find the matrix of A^* in the bases $\{g^1, \ldots, g^m\}, \{f^1, \ldots, f^n\}$

Definition 2.10. Assume $T: G \to \operatorname{GL}(V)$ is a representation over a field F. Define its dual representation $T^*: G \to \operatorname{GL}(V^*)$ by

$$T^*(g) = (T(g^{-1}))^*.$$
 (2.4)

Problem 2.11. Show that T^* is indeed a representation of the group G.

Problem 2.12. Define $T: \mathbb{Z} \to \mathrm{GL}(\mathbb{R}^3)$ as

$$T(n) = \begin{pmatrix} 1 & n & \frac{n^2 + n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Show that T is a representation. Find the matrix of $T^*(n)$ in the dual basis.

Question 2.13. Assume $T: G \to GL(V)$ is a representation. Is it always true that the representations T and $(T^*)^*$ are isomorphic?

Problem 2.14. Let T be an irreducible representation of a group G. Is it possible that the representation T^* is not irreducible?

3. Tensor products of vector spaces, endomorphisms and representations

Definition 3.1. Assume that V, U are finite-dimensional vector spaces over a field \mathbb{F} . Denote by Free(V, U) the set of finite linear combinations $\sum_{i=1}^{n} a_i(x_i, y_i)$, where $n \in \mathbb{Z}_+$, $x_i \in V, y_i \in U, a_i \in \mathbb{F}, \forall 1 \leq i \leq n$. It has a natural structure of a vector space. Then define $Ident(V, U) \subset Free(V, U)$ as

$$Ident(V, U) = \operatorname{span} \langle \{ (ax + bz, y) - a(x, y) - b(z, y) \mid x, z \in V, y \in U, a, b \in \mathbb{F} \} \cup \{ (x, ay + bt) - a(x, y) - b(x, t) \mid x \in V, y, t \in U, a, b \in \mathbb{F} \} \rangle.$$
(3.1)

The tensor product $V \otimes U$ is, by definition, the quotient space Free(V, U) by Ident(V, U).

Proposition 3.2. Assume that V, U are finite-dimensional vector spaces over a field \mathbb{F} , $\{v_1, \ldots, v_n\}$ is a basis of V, $\{u_1, \ldots, u_m\}$ is a basis of U. Then

$$\{v_i \otimes u_j \mid 1 \le i \le n, 1 \le j \le m\} \tag{3.2}$$

is a basis of $V \otimes U$.

Exercise 3.3. Prove this proposition, it may be a bit challenging to show the linear independence.

Proposition 3.4. Assume that V is a finite-dimensional vector space. Then there exists an isomorphism between the vector spaces $V \otimes V^*$ and $\operatorname{End}(V)$ such that it does not depend on the choice of the basis in V

Exercise 3.5. Prove this proposition.

Definition 3.6. Assume that V, U are finite-dimensional vector spaces over a field \mathbb{F} , $A \in \operatorname{End}(V)$, $B \in \operatorname{End}(U)$. Define $A \otimes B \in \operatorname{End}(V \otimes U)$ by the formula

$$A \otimes B(v \otimes u) := (Av) \otimes (Bu) \tag{3.3}$$

the tensors of the form $v \otimes u$ and then extend by linearity.

Exercise 3.7. Show that $A \otimes B$ is well-defined.

Exercise 3.8. Assume that V, U are finite-dimensional vector spaces over a field \mathbb{F} , $\{v_1, \ldots, v_n\}$ is a basis of V, $\{u_1, \ldots, u_m\}$ is a basis of U, $A \in \text{End}(V)$, its matrix in the basis $\{v_1, \ldots, v_n\}$ is

$$(a_i^j)_{1 \le i \le n, 1 \le j \le n},\tag{3.4}$$

 $B \in \text{End}(U)$, its matrix in the basis and $\{u_1, \ldots, u_m\}$ is

$$(b_i^j)_{1 \le i \le m, 1 \le j \le m}. \tag{3.5}$$

Find the matrix of $A \otimes B$ in the basis

$$\{v_1 \otimes u_1, v_1 \otimes u_2, \dots, v_1 \otimes u_m, v_2 \otimes u_1, \dots, v_n \otimes u_m\}. \tag{3.6}$$

Question 3.9. Is it always true that

$$\operatorname{Tr}(A \otimes B) = \operatorname{Tr}(A)\operatorname{Tr}(B)$$
? (3.7)

Definition 3.10. Assume $T: G \to \operatorname{GL}(V)$, $S: G \to \operatorname{GL}(U)$ are representations over a field \mathbb{F} . Then $T \otimes S: G \to \operatorname{GL}(V \otimes U)$ is defined by

$$(T \otimes S)(g) := (T(g)) \otimes (S(g)). \tag{3.8}$$

Exercise 3.11. Let T_1, \ldots, T_n be the set of all pairwise non-isomorphic one-dimensional complex representations of G. Show that this set form a group, where the tensor product plays a role of the multiplication and the inverse element is the dual representation. Describe that group for $G = \mathbb{Z}_n$, S_n .

Problem 3.12. Let T be a representation of a finite group G. Is it true that the representation $T \otimes T^*$ of the group G always has a one-dimensional invariant subspace?

4. Symmetric and antisymmetric tensors

Definition 4.1. Let V be a vector space over \mathbb{F} . Define the subspaces $S^2(V)$ and $\Lambda^2(V)$ of $V \otimes V$ as

$$S^{2}(V) := \operatorname{span}\langle x \otimes y + y \otimes x \,|\, x, y \in V \rangle, \quad \Lambda^{2}(V) := \operatorname{span}\langle x \otimes y - y \otimes x \,|\, x, y \in V \rangle. \tag{4.1}$$

Exercise 4.2. Show that for any finite-dimensional vector space V we have that

$$S^2(V) \oplus \Lambda^2(V) = V \otimes V. \tag{4.2}$$

Problem 4.3. Consider the projection operator $P \in \text{End}(\mathbb{R}^2 \otimes \mathbb{R}^2)$ onto the subspace $S^2\mathbb{R}^2$ corresponding to the decomposition

$$\mathbb{R}^2 \otimes \mathbb{R}^2 = S^2 \mathbb{R}^2 \oplus \Lambda^2 \mathbb{R}^2.$$

Find the matrix of P in the standard basis.

Definition 4.4. Assume that V is a vector space, $A \in \text{End}(V)$ over \mathbb{F} . Define the endomorhisms $S^2(A) \in \text{End}(S^2(V)), \Lambda^2(A) \in \text{End}(\Lambda^2(V))$ as the restrictions of $A \otimes A$ to the subspaces $S^2(V)$ and $\Lambda^2(V)$ respectively.

Definition 4.5. Assume that $T: G \to GL(V)$ is a representation. Define representations $S^2T: G \to GL(S^2(V)), \Lambda^2T: G \to GL(\Lambda^2(V))$ by

$$(S^2T)(g) := S^2(T(g)), \quad (\Lambda^2T)(g) := \Lambda^2(T(g)).$$
 (4.3)

Chapters from the textbooks relevant for the lecture:

• S.Roman, Advanced Linear Algebra, Sections 3,14.