MATH IN MOSCOW. ALGEBRAIC GEOMETRY. HOMEWORK 4

- (1) Prove that a Veronese map $v_d \colon \mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{n}-1}$ given by the formula $v_d(x_0:\ldots:x_n) \mapsto (x_0^d:x_0^{d-1}x_1:\ldots:x_n^d)$ (take all monomials of degree d in x_i) is an isomorphism onto its image.
- (2) Using Segre map $s: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{(n+1)(m+1)-1}$ given by the formula $s[(x_0:\ldots:x_n),(y_0:\ldots:y_m)] \mapsto (x_0y_0:x_0y_1:\ldots:x_ny_m)$ define the structure of a projective variety on $\mathbb{P}^n \times \mathbb{P}^m$.
- (3) Prove that the image of the Veronese map is not contained in a hyperplane. Prove that the image of the Segre map is not contained in a hyperplane.
- (4) Prove that a subset $V \subset \mathbb{P}^n \times \mathbb{P}^m$ is closed if and only if V is given by a family of equations

$$F_i(x_0,\ldots,x_n,y_0,\ldots,y_m)=0$$

where F_i is a polynomial homogeneous both in x_i and y_j . Formulate and prove a similar claim for closed subsets of $V \subset \mathbb{P}^n \times \mathbb{A}^m$.

- (5) Let $\phi: X \to Y$ be regular map of quasi-projective varieties. Prove that the graph $\Gamma_{\phi} = \{(x, y) \in X \times Y \mid y = \phi(x)\}$ is a closed subset of $X \times Y$ isomorphic to X.
- (6) Let V be a 3-dimensional vector space. Prove that the closed subset of $\mathbb{P}(S^2V^*) = \mathbb{P}^5$ that corresponds to plane conics of rank 1 is isomorphic to $v_2(\mathbb{P}^2)$.